

1

CS 351 – DATA ORGANIZATION AND MANAGEMENT

FALL 2010 - Programming Project #3

Basic DNS Server Implementation with Linear Hashing

Due: January 3, 2010 at 11:59 PM

1. The Objective

In this programming assignment, you are asked to implement a JAVA console application,

which simulates a basic DNS server using linear hashing file structure. The aim of the

assignment is to make you understand linear hashing better and have fun with it. You are

allowed to use your program for the second project. In fact, we encourage you to do so.

Additionally, you will provide a short report (max. 1 page) that explains your algorithm to

solve the problem. Also discuss whether linear hashing is a good method to store records

of a DNS server. Justify your answer. Please read the entire assignment before starting

implementation.

2. Problem Specification

The basic DNS server, which your program will simulate, provides IP addresses for

domain names. In order to do this, it stores each (domain name, IP, expiration date)

records until they expire. Your program will keep them in a linear hashing file structure.

At each unit of time, some new records are inserted and some old records are deleted

because they would not be valid anymore. First delete the records that are expired, then,

add new records to the structure. Your program should implement these operations as well

as answer coming queries (i.e., find the IP address of a given URL). In order to insert a

record to the linear hashing structure, first find its hash value by using the provided hash

function (see below). Then, insert the record into the structure by considering the hash

value. Each query is a string representing a domain name. The input and output

specifications are provided below.

http://en.wikipedia.org/wiki/Domain_Name_System

2

Important Note: Input and output files are somewhat difficult to comprehend in this text

since their lines are too long. Thus, please take a look at their actual versions on the web

page.

Input Specifications

Your program will take five parameters.

 Load Factor: The load factor value of the linear hashing file structure. It is given

as the first parameter to your program. (Note that insertions are done as we

explained in the previous project and as we done in the classroom.)

Sample Load Factor: 0.666

 Number of Records per Bucket: It is given as the second parameter to your

program.

Sample Number of Records per Bucket: 3

 Records and Queries File: In this file, each line i contains the records to be

inserted and the queries at time i. The records are separated with a space character.

The queries are also separated with a space character. Between records and

queries, there exists a tab character. Each record contains three values (domain

name, IP, expiration time). Each query is a domain name. The records and queries

file path is given as the third parameter to your program.

Sample Records and Queries File

www.youtube.com 208.65.153.238 3 www.facebook.com 69.63.184.142 3

www.wikileaks.ch 213.251.145.96 5 www.google.com 216.239.51.99 3

 www.youtube.com

www.milliyet.com.tr 83.66.140.16 5 www.radikal.com.tr 213.243.16.14 5

 www.facebook.com

www.xkcd.com 72.26.203.99 8 www.yahoo.com 69.147.76.15 8

 www.google.com www.armut.com

www.bilkent.edu.tr 139.179.10.12 8 www.google.com 209.85.135.136 5

 www.xkcd.com www.milliyet.com.tr

http://cs.bilkent.edu.tr/~evarol/cs351/recordsandQueries.in

3

www.fizy.com 85.17.82.33 8 www.youtube.com www.wikileaks.ch

www.radikal.com.tr www.google.com

 Linear Hashing Structure Output File: The output file where final linear

hashing structure is printed. The file path is given as the forth parameter to your

program.

 Results of Queries File: The file where the results of the coming queries are

printed. The path is given as the fifth parameter to your program.

3. Output Specifications

 Linear Hashing Structure Output: Your program should print the final state of

the linear hashing structure to the specified output file.

Expected Linear Hashing Structure Output

www.bilkent.edu.tr 139.179.10.12 8 www.radikal.com.tr 213.243.16.14 5

www.wikileaks.ch 213.251.145.96 5 www.fizy.com 85.17.82.33 8

www.milliyet.com.tr 83.66.140.16 5

www.xkcd.com 72.26.203.99 8 www.google.com 209.85.135.136 5

www.yahoo.com 69.147.76.15 8

 Results of Queries Output: Your program should print the corresponding ip

addresses of the queries. If there is no record for a query, just print -1.

Expected Results of Queries Output File

208.65.153.238

69.63.184.142

216.239.51.99 -1

72.26.203.99 83.66.140.16

-1 213.251.145.96 213.243.16.14 209.85.135.136

http://cs.bilkent.edu.tr/~evarol/cs351/linearHashingStructure.out
http://cs.bilkent.edu.tr/~evarol/cs351/queriesResults.out

4

4. Hash Function

 public int getHashValue(String domainName)
 {
 int total=0;
 for(int i=0; i < domainName.length(); i++)
 if(Character.isLetter(domainName.charAt(i)))
 total+= i * (Character.getNumericValue(domainName.charAt(i)) -
Character.getNumericValue('a') + 1);
 return (total%10000);
 }

5. Sample Run Command for Your Program

java your-java-class 0.666 3 records-and-queries-file-path linear-hashing-file-structure-

output-file-path results-of-queries-output-file-path

6. General Rules

 Your program must be named BasicDNSServer.java

 Your report must be named StudentID.doc (e.g. 20504152.doc)

 Note that any input file could be used for testing purposes. Also a supportive tool is

used to detect plagiarism.

7. Tutorial: How to R/W File in JAVA

In JAVA, there are various ways to handle r/w a file; but you must use the following way.

Other implementations will not be accepted.

You have to use BufferedReader and BufferedWriter classes to read and write a file

respectively. Consider using the following methods of BufferedReader (You can also see

JAVA API for all methods):

http://cs.bilkent.edu.tr/~evarol/cs351/hashFunction.dat

5

 constructor: BufferedReader(Reader in): Opens the file to read. The argument is an

instance of Reader class. See JAVA API for more details.

 readLine(): Reads a line from the file.

 close(): Closes the file.

Also use the following methods of BufferedWriter:

 constructor: BufferedWriter(Writer out): Opens the file to write. The argument is

an instance of Writer class. See JAVA API for more details.

 write(String str): Writes a string to the file.

 close(): Closes the file.

8. Submission

I. Create a RAR archive file for your BasicDNSServer.java and 20504152.(doc | docx)

files.

II. Name your RAR archive file as StudentID_cs351p3.rar(e.g. 20504152_cs351p3.rar).

Files with other formats will be ignored automatically.

III. Use the submission page

http://cs.bilkent.edu.tr/~ctoraman/cs351fall10/project3/submission/ to upload your RAR

archive file. Read the upload rules in the submission page as well. Late submissions

will not be accepted.

IV. You can resubmit your project until its due date.

V. For any question, contact with Emre VAROL(evarol@cs.bilkent.edu.tr).

http://cs.bilkent.edu.tr/~ctoraman/cs351fall10/project3/submission/
mailto:evarol@cs.bilkent.edu.tr

